
Implementing Neural Machine Translation with Bi-Directional
GRU and Attention Mechanism on FPGAs Using HLS

Qin Li1∗, Xiaofan Zhang1∗, JinJun Xiong2, Wen-mei Hwu1, Deming Chen1
1University of Illinois at Urbana-Champaign, 2T.J. Watson Research Center, IBM

{qinli2, xiaofan3, w-hwu, dchen}@illinois.edu, jinjun@us.ibm.com

ABSTRACT
Neural machine translation (NMT) is a popular topic in Natural
Language Processing which uses deep neural networks (DNNs) for
translation from source to targeted languages. With the emerging
technologies, such as bidirectional Gated Recurrent Units (GRU),
attention mechanisms, and beam-search algorithms, NMT can de-
liver improved translation quality compared to the conventional
statistics-based methods, especially for translating long sentences.
However, higher translation quality means more complicated mod-
els, higher computation/memory demands, and longer translation
time, which causes difficulties for practical use. In this paper, we
propose a design methodology for implementing the inference of
a real-life NMT (with the problem size = 172 GFLOP) on FPGA
for improved run time latency and energy efficiency. We use High-
Level Synthesis (HLS) to build high-performance parameterized IPs
for handling the most basic operations (multiply-accumulations)
and construct these IPs to accelerate the matrix-vector multiplica-
tion (MVM) kernels, which are frequently used in NMT. Also, we
perform a design space exploration by considering both computa-
tion resources and memory access bandwidth when utilizing the
hardware parallelism in the model and generate the best param-
eter configurations of the proposed IPs. Accordingly, we propose
a novel hybrid parallel structure for accelerating the NMT with
affordable resource overhead for the targeted FPGA. Our design is
demonstrated on a Xilinx VCU118 with overall performance at 7.16
GFLOPS.

1 INTRODUCTION
Machine translation is one of the most challenging applications

for natural language processing. During recent years, we have seen
rapid development of technologies which can be applied to machine
translation and among them, NMT, a neural network based solu-
tion has become one of the best solutions which outperforms the
conventional statistical machine translation [1–4]. The NMT takes
advantages of its inherent ability of exploiting and understanding
the whole input sentences before generating the output sentences
so that it can deliver more meaningful and more fluent translations.

∗These authors made equal contributions.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASP-DAC 2019, Jan. 2019, Tokyo, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

Figure 1: Structure of a real-life NMT with encoder-decoder
structure, attention mechanism, and beam search.

In most practical cases explored so far, NMT has been imple-
mented using the encoder-decoder algorithm [3, 4]. To overcome
the vanishing gradient problem, Long Short Term Memory (LSTM)
and GRU are proposed to better reserve the long-term memory
so that NMT can understand the information coming from long
sentence inputs [3, 4]. However, the encoder-decoder based NMT
models pose a great challenge to encode any sentences into fixed-
length vectors, which means that information needs to be com-
pressed when input becomes longer. As a result, the quality of the
output produced deteriorates significantly as the length of the input
sentence increases. Hence, an attention mechanism is needed to
allow NMT to pay more attention to the more relevant portions,
i.e., certain word or phrase, instead of focusing on the whole input
sentence [2]. Also, beam search is often used for improving the
output candidate selection.

Although NMT is a powerful tool, it is very complicated and
difficult to implement in hardware. Figure 1 presents a high-level
view of the real-life NMT model whose hardware implementation
is the focus of this paper. It combines the most popular encoder-
decoder structure with an advanced attention mechanism in each
decoder and a beam search algorithm for picking the top-N can-
didates (N = 5 in Figure 1) every iteration for better adaption
of the long sentence inputs. The length of input and output sen-
tences are donated as Li and Lo , so that this model have Li layers
of bidirectional GRU and Lo iterations in beam search. In real-life
applications, Li and Lo can even reach 50, so that we set both Li
and Lo to 50 in our design.

In this paper, we aim to exploit the capability of FPGAs for
delivering high energy efficiency while parallelizing tasks for such
compute intensive real-life NMT applications. We leverage HLS
to explore the design space to propose an energy-efficient, high-
performance FPGA-based NMT design with a bidirectional GRU,
attentional mechanism, and beam search algorithm. To summarized,
the main contributions of this paper are:

https://doi.org/10.475/123_4

(1) The first FPGA-based design of a real-life NMT model.
We implement a real-life NMTmodel with all key features including
bidirectional GRU, attention mechanism, and beam search algo-
rithm.

(2) Comprehensive design space explorations using HLS.
We explore the design space for implementing NMT under FPGA’s
computation and memory constraints. Different parallelism degrees
from various levels (e.g., IPs, kernels, modules) are evaluated to
finalize the best configurations.

(3) Highly optimized HLS IPs. We propose major types of
HLS IPs as basic building blocks for implementing NMT. With the
parameterized IPs, functions can be configured according to the
resource exploration results for the best performance.

(4) A hybrid parallel structure for running NMT with af-
fordable resource overhead and high performance. We com-
bine the recurrent (folded) structure with parallelized decoders for
a better tradeoff between resource utilization and performance.

The rest of this paper is organized as follows. In Section 2 and
3, we introduce the related work and the targeted NMT model
respectively. The proposed FPGA design and optimization schemes
are described in Section 4 and 5. Experimental results are provided
in Section 6. In Section 7, we conclude this paper.

2 RELATEDWORK
FPGA has demonstrated its effectiveness by successfully imple-

menting complex applications such as H.264 video decoder [5]
and object-detection system [6]. As DNN-applications become one
of the most complicated workloads available today, a significant
amount of work have been done for mapping DNNs to FPGAs
which cover both Convolutional Neural Networks (CNNs) [7–9],
Recurrent Neural Network (RNNs) [10–12], and even the hybrid
structure containing both CNNs and RNNs [13]. An accelerator
for VGG network is investigated and mapped onto FPGA in [7]
using OpenCL design flow. In [8], a Winograd-based template is
used to reduce the number of multiplications and boost the CNN
inference performance on FPGA. A automation tool for building
FPGA-based CNN accelerator is developed in [9] which bridges
the gap between DNN design in machine learning frameworks and
FPGA board-level implementation. Previous literature also focuses
on implementing RNNs on FPGAs. A LSTM model compression
scheme is proposed in [10] for exploring the sparsity of neural
network and building FPGA-based accelerator. In [11], a RNN with
LSTM layers is implemented on FPGA with 7.26 GFLOPS peak
reported performance. However, the authors did not provide the
detailed conditions for reaching such performance while the end-
to-end throughput is only 0.007 GFLOPS (problem set size: 2.76
mega-operations divide by overall latency: 0.39 second). A LSTM
with fixed-point data type is implemented in [12] because FPGAs
perform favorably with fixed-point DSP units but not as well when
using floating-point DSP units. In addition, an accelerator and a
corresponding resource allocation scheme for Long-term Recurrent
Convolutional Network are present in [13] which covers both CNN
and RNN implementations on FPGA.

Although FPGAs have shown great potentials onDNN implemen-
tation, there is still no literature focusing on building an end-to-end
NMT model on FPGA for running natural language translation.

Based on a deep RNN-like structure (e.g., LSTM and GRU with
around 50 layers), the real-life NMT employs more hidden neurons
(≥1024 neurons every layer) and intricate structures (such as atten-
tion mechanism and beam search algorithm) for better understand
the input sentences. These features, however, make NMT difficult
to design and implement in hardware.

The novelty in this project lies in the FPGA implementation
of the latest NMT model featuring bidirectional GRU, attention
mechanism, and beam search. We propose the highly optimized
HLS IPs and use them to build the MVM kernel for dealing with the
most computational intensive parts. By using HLS, we also perform
design space exploration to evaluate the configurations for building
MVM kernel. In addition, we propose a FPGA resource distribution
scheme for workload balancing across layers so that we tradeoff
the computation demands and the limited resources available. To
the best of our knowledge, this is the first such an implementation
on FPGAs.

3 NMT
The general idea of NMT is to first pre-process the input sen-

tence with length Li into Li word-embedding vectors, and then go
through encode-decoder structure and finally output the translated
sentence. The characteristic functions of a real-life NMT can be
found in the encoder (with bidirectional GRUs) and the decoder
(with attention and beam search algorithm).

3.1 Bidirectional GRUs
z(t) = σ (W (z)x (t) +U (z)h(t−1)) (1)

r (t) = σ (W (r)x (t) +U (r)h(t−1)) (2)

h̃(t) = tanh(U (r (t) ◦ h(t−1)) +Wx (t)) (3)

h(t) = (1 − z(t))h(t−1) + z(t)h̃(t) (4)

The RNNs we used for encoder are GRUs with 1024 neurons.
There are two gates in the GRU unit: the update gate and the reset
gate whose functions illustrated by Eq. (1) and Eq. (2), respectively.
The update gate controls the amount of memory need to be updated
while the reset gate determines the portion of memory need to be
discarded. Therefore, after running Eq. (3) and Eq. (4), the output
of current state is generated, and it will be used as the memory for
next state. Noticed the ◦ is an element-wise multiplication.

In general, RNNs learn information from previous states. How-
ever, this learning behavior is not good enough for handling natural
language translation since the meaning of a word depends on not
only the text shown before but also after it. Therefore, NMT model
uses bidirectional RNN (BRNN) to link both parts preceding and
following a word. According to [14], bidirectional RNNs can deliver
higher accuracy comparing to single layer of RNNs.

BRNN contains two layers of RNNs as forward RNN and back-
ward RNN (Figure 2). The forward RNN reads inputs in an ordered
way while the backward RNN reads reversely. BRNN generates
forward hidden states and backward hidden states annotating the
same input word with h = {hf ,hb } (each vector h has size of
1024 × 2 = 2048). After processing all input words, BRNN outputs
a vector map with size of 2048 × Li , annotating the whole input
sentence.

2

Figure 2: Bidirectional GRU layers in the targeted NMT en-
coder

Figure 3: Decoder structure
3.2 Decoder Structure
Opposite to the encoder, the decoder converts the vector into

a meaningful sentence in targeted language using RNNs. Figure 3
shows a detailed structure of the decoding process. The embedded
vector representing the last generated word is passed into the first
GRU layer and then sent to the attention module. The output of
attention module (c) is put into another GRU layer (GRU_nl) to gen-
erate hidden state s . After that, the context c , the embedded vector
y, and the second GRU output s are passed to three feed-forward
(FF) layers, respectively. The vector generated by those FF layers are
combined together and put into another FF layer (FF_Combined).
After performing softmax of the output, a probability map is gener-
ated with the same size as the length of the target dictionary (30000
in our case) .

3.3 Attention Mechanism

Figure 4: Example of a pair of sentences showing how the
words in source sentence aremapping to the target sentence.
The darker the line is, the more related the pair of words
linked by the line [15].

The transformation from the source language to the target lan-
guage is not purely one-to-one mapping. Multiple words from
source language may be related to a single word in the target
language and vice versa. Hence, we need attention mechanism

Figure 5: Operation distribution in the targeted NMT (left)
and computational demand breakdown in a single decoder
(right)

to determine the importance of each word in source language while
generating a target word. Detailed algorithm can be found in Eq.
(5) through (7).

ei j = v
⊤ tanh(Uas ′j +Wahi) (5)

αi j =
exp(ei j)∑L
i exp(ek j)

(6)

c j =
L∑
i
αi jhi (7)

In Eq. (5), s ′j represents the hidden state generated by the first
GRU in the decoder, while h represents each hidden state of the
encoder. The subscript i and j indicate the number of iteration
of the encoder and the decoder, respectively. Va , Ua , andWa are
constants in these equations while ei j represents the energy state.
In Eq. (6), all energy states generated by iteration j are normalized
using softmax, transferring to αi j to report the importance of each
input word during translation. Finally, the attention information c
is generated in Eq. (7).

3.4 Beam Search
The goal of NMT is to find the most suitable output sentence.

However, previous works as in [3] have demonstrated that only
choosing one word with the highest probability for each iteration
may not have satisfactory results. Instead, the recent NMT uses
beam search for selecting more candidate words in each iteration
and improving the accuracy. We choose beam width K = 5 in
our implementation. For each iteration, the top five candidates
are chosen as potential answers. Whenever the generated word is
eos (end of sentence) is seen, the activated decoder is no longer
propagated. The whole process terminates when all of the five paths
reach eos , thereby selecting the sentence with the highest score.

4 DESIGN METHODOLOGIES
In this section, we summarize the design methodologies during

NMT implementation regarding the complicated network intercon-
nection, computational demand, and the utilization of HLS design
flow.

4.1 Profiling Results
According to the algorithm mentioned in section 3, GRU layers,

attention mechanism, and feed-forward layers are heavily used
3

in the model. We first encapsulate these network features into
separated functions and use those functions as basic building block
to construct our design using HLS.

The NMT model we targeted is a real-life model, which em-
ploys complicated and computation-intensive network structures.
It places very high demand on computation with 172 GFLOP in
total for translating a 50-word sentence. Inside the encoder, there
are bidirectional GRUs (with 2048 neurons in each layer and Li
layers in total) as shown in Figure 2. Regarding the decoder-side,
attention mechanism is used for each decoder and because of the
beam search algorithm, the encoded features need to go through
5Lo + 1 decoders (Figure 1) for generating final results. The whole
NMT flow needs to consume a great amount of hardware resource
and it is challenging to be mapped onto FPGA.

To understand the computational complexity distribution of the
NMT model, we start profiling and collect the number of opera-
tion in each layer. Results are shown in Figure 5, the amount of
operation in encoder is negligible (0.42%) compared to the decoder,
which consumes 99.67% of the total complexity. Therefore, our op-
timization mainly focuses on the decoder side. In our calculation,
we assume the length of input and output sentences are the same
as Lo = Li = 50.

4.2 NMT overall design
The structure of our decoder design is shown in Figure 6(a). All of

the intermediate results are stored in on-chip buffers, while weights
and biases are stored off-chip because of limited size of the on-chip
BRAM. Therefore, during each calculation, portions of weights need
to be loaded from DDR memory. We developed some techniques to
exhaustively reuse data as well as resources on the board.

To fully utilize the on-chip memory in the FPGA because of its
fast data access, we want to try our best to reuse the idle portion.
Once the data is propagating through each layer, the intermediate
result can be stored in the same set of buffers. For instance, the
number of neurons in each GRU layer of the NMT model is the
same. Therefore, one set of buffers can be shared for multiple GRU
layers. The buffer sharing technique allows intermediate results of
such a large NMT model to be fully stored on-chip.

Theoretically, when the data is propagating through a specific
layer, computation resources for other layers will be idle if they
are not shared. In order to avoid enormous idle IPs, we want to
share them for multiple layers. In this way, the DSP usage is reduced.
However, enormous MUXes need to be instantiated for this purpose.
We have to control the number of IPs instantiated for the whole
network to balance between DSP usage and LUT usage.

4.3 Highly Optimized IPs
Most of computation is induced by MVM(Matrix Vector multi-

plication) processes in our implementation. For the acceleration
purpose, we developed an optimized IP for MVM kernels with fixed
size of input/output buffers and use the IP globally for MVM kernels.

The IP consists of several compute engines(CE). These engines
are optimized implementations of MAC units with registers storing
the intermediate data. The multiplied results are added using an
adder tree, generating a complexity of O(logn). All of the input

Table 1: Effect of CE size
CE size latency DSP%

32 21 2
64 25 4
128 29 9

arrays are partitioned so that all of the CEs can be launched in
parallel and all of the multiplication processes run simultaneously.

Large matrix vector multiplication tasks can be assigned to sev-
eral small MVM processes. As shown in Figure 7, in a MVM process,
the matrix M and vector V are cut into smaller portions to fit the
input size of the IP first, and then one set of those portions will be
stored in buffers during each calculation. The size of buffers are
designed to fit the size of the IP inputs and outputs. After each
calculation, the output of the kernel will be added back to correct
output dimension.

Two kinds of MVM structures are designed in order to align with
the beam search algorithm. One deals with single MVM process
and the other one can handle multiple MVM processes (named
MVM_five) that share the same weight. At the first iteration of the
decoder as well as all the MVM processes occurred in the encoder,
only one MVM process will be performed each time.When the
decoder reaches the second stage, multiple decoding processes
need to be performed in the later iterations because of the beam
search algorithm.

4.4 Hybrid Parallel Decoders
In order to increase the data reuse and eliminate unnecessary

data loading, we developed a hybrid parallel structure. Multiple
MVMs are processed portion by portion, as shown in Figure 6(b).

Since we choose five as the width of the beam search, at most
five decoding processes will be activated. Since all of the decoders
share the same set of weights (stored off-chip), we only have to load
one portion of weight to perform five calculations for decoders if
the decoders run in parallel. The design can increase the data reuse
compared to series design.

When a portion of weight is loaded off-chip, the computation task
is to calculation five portions of MVM processes in five decoders
respectively. Since intermediate results can be stored in registers
instantiated in CEs, as long as the computation begins, we are able
to load next set of data into the IP buffers. Therefore, we have
to find a suitable IP size in order to achieve comparable loading
time and computation time so that the loading time can hide the
computation time. The IP size is related to CE size as well as the
number of CEs instantiated. The number of CEs is not limited to
five to make the five decoders run exactly in parallel. We can firstly
load all five sets of data, and then perform the calculation in series
depending on how many CEs are instantiated.

5 DESIGN SPACE EXPLORATION
NMT is a large network containing various layers and a huge

number of parameters. How to properly allocate the limited re-
sources in FPGA to achieve a complete network or even a good
performance becomes really important. Most of the calculation
concerns about the MVM process. Therefore, we conduct an ex-
periment to explore how the MVM kernel should be designed to
achieve the best performance.

4

Figure 6: (a) Architecture level structure of decoder with beam search algorithm applied; (b) Hybrid parallel MVM structure;
(c) CE with Fine-grained pipeline stages

Figure 7: Example for MVM process with four CEs instanti-
ated

Figure 8: Performance of different kernel design in single
512 MVM process

Three procedures are included in each iteration of this MVM
process. First, the weight needs to be loaded into buffers, then
the computation IP will do the calculation. After that, the results
produced by the IP will be added to the output. The computation
IP is made of single or multiple CEs. Considering limited resources

in FPGA, we firstly analyze the resource for different sizes of CEs.
As shown in table 1, the DSP usage is proportional to the CE size.

We instantiated different computation IPs and recorded the per-
formance when those IPs calculated vector matrix multiplication
with vector with size of 512 by 1 and matrix with size of 512 by 512,
as shown in Figure 8. In the Figure, different colors of bars represent
different numbers of sets of buffers instantiated. Both pipelined
version and unpipelined version are included in the graph.

Pipelined vs unpipelined: The CE contains registers that can
save intermediate results. Once the loading process is done, the
calculation can be launched. We ignore the storing time because
the number of stored data in each process is negligible. After the
first stage, the intermediate results are stored in the registers. At
that time, the next set of data can start to be loaded to the buffers.
Therefore, with pipelining, the latency can be largely reduced. As
shown in Figure 8, the performance for pipelined version is much
higher than that of the unpipelined version.

Furthermore, since the CE we developed has internal registers
to store intermediate results, one single CE can be pipelined so
that it can handle multiple sets of data. From the analysis using
HLS tool, we find out that one pipelined CE can achieve similar
performance compared to multiple CEs run in parallel if they have
the same sets of buffers. However, when the CE is not pipelined,
it can not simultaneously handle multiple sets of data. Therefore,
for the pipelined version, we only instantiated single CE to handle
various sets of data. For the unpipelined version, the number of
CEs and the number of buffers are the same.

Match between loading and computation: As shown in the
Figure 8, the performance will remain nearly the same if the number
of buffer exceeds certain limit for the same size of CE. The process
is limited by time for loading off-chip data. In order to achieve
the best performance, the time for data loading and calculating
should be similar, large portion of them can be overlapped under
pipelining. In that way, we can achieve the good performance as
well as efficient utilization.

5

Table 2: Comparison with previous work

Reference [11] our work
Targeted Model 3 LSTM Layers A real-life NMT

Total Size 2.76MOP 170GOP
FPGA type Virtex-7 VCU118
Precision Float32 Float32
DSP Usage 1176 5969
Frequency 150MHz 100MHz

Peak performance 7.26 GFLOPS 14.8 GFLOPS (2x)
End-to-end performance 0.007 GFLOPS 7.16 GFLOPS (100x)

For MVM_five, since the weights are shared, comparing to the
single MVM version, loading speed can be considered five times
faster than that of single MVM version. Therefore, with matched
MVM_five kernel, we can achieve at most five times speed up. We
achieved 14.8 GFLOPS in our hybrid parallel MVM_five process.

Choosing IP structure: Firstly, since the network is pretty
huge, with limited data reuse, the resource usage limits both the
number of IP instantiated and the size of the IP. Also, extra DSP is
needed for non-linear calculations such as exponential and hyper
tangent. We want to choose a set of CEs that can achieve both high
performance and efficient resource usage.

6 EXPERIMENTAL RESULTS
In this section, we demonstrate our NMT design on a Xilinx

Ultrascale+ VCU118 development board with a XCVU9P FPGA. We
first introduce the prepare work of this project and then we present
the performance results and compare our design to the previous
literature.

6.1 Prepare work
To implement the overall NMT model, we first converted the

python source code into synthesizable C code without any opti-
mization in HLS. After obtaining a baseline version, we applied our
design optimization to speed up the performance.

We used 32-bit floating point, same datatype as the original
model, to complete the design. Even though FPGA cannot efficiently
deal with floating point calculation, using the same data format can
avoid accuracy loss.

6.2 Results and comparison
After constructing the whole model, we compared our work

with previous RNN related hardware implementation. As shown
in Table 2, our work has more balanced performance with our
optimized pipelined structure compared to the other work since
our peak performance and the end-to-end performance (average
performance of the entire flow) are relatively close to each other.
Also, with kernel reuse, the DSP usage does not increase a lot even
though our model is much larger.

The original NMT model is constructed by Theano, a platform
designed for deep learning. We tested the performance for our
FPGA version by using an input sentence with length 50. As shown
in Table 3, the latency is compared with performances of two CPUs
using the same sentence. For CPUs, the weights are firstly loaded
into cache and then the data is computed. Since FPGA has limited

Table 3: Performance Comparison with Other Devices

Hardware Type loading computation total
Intel(R) Xeon(R) CPU E5-2603 64.9s 18.7s 87.7s
Intel(R) Xeon(R) i5 CPU 650 66.0s 8.95s 74.95s

XCVU9P FPGA (loading + computation) 24.0s

memory to store the weights (total size of 300+MB), loading and
calculation are done portion by portion simultaneously.

7 CONCLUSION
In our work, we built the first FPGA-based implementation of the

Neural Machine Translation model. Unlike previous works which
play with small-scale RNN or LSTM models, we implement a real-
life NMT model with all latest features including bidirectional GRU,
attention mechanism, and beam search algorithm. We present a
comprehensive design space exploration to better deliver high per-
formance NMT design under FPGA resource constraints. By taking
advantage of HLS, we can alleviate the design and optimization
efforts.

For the future work, we can focus on converting the model to
half-floating point or even fixed point with less bit width than sin-
gle precision for further acceleration purpose, because they allow
larger number of weights transfer per unit time under limited mem-
ory bandwidth. Furthermore, we can do quantization and linear
approximations. By retraining the model, we could potentially gain
high performance and retrieve accuracy back after applying those
optimization techniques.

ACKNOWLEDGMENTS
This work was partly supported by the IBM-Illinois Center for

Cognitive Computing System Research (C3SR) – a research collab-
oration as part of IBM AI Horizons Network.

REFERENCES
[1] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models.

In EMNLP, 2013.
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. ICLR, 2015.
[3] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning

with neural networks. In NIPS, 2014.
[4] Kyunghyun Cho et al. Learning phrase representations using RNN encoder-

decoder for statistical machine translation. arXiv:1406.1078, 2014.
[5] Xinheng Liu et al. High level synthesis of complex applications: An h. 264 video

decoder. In FPGA, 2016.
[6] Su Liu et al. Real-time object tracking system on fpgas. In Symposium on

Application Accelerators in High-Performance Computing (SAAHPC), 2011.
[7] Jialiang Zhang and Jing Li. Improving the performance of opencl-based FPGA

accelerator for convolutional neural network. In FPGA, 2017.
[8] Junzhong Shen et al. Towards a uniform template-based architecture for acceler-

ating 2d and 3d cnns on FPGA. In FPGA, 2018.
[9] Xiaofan Zhang et al. Dnnbuilder: an automated tool for building high-

performance dnn hardware accelerators for fpgas. In ICCAD, 2018.
[10] Song Han et al. Ese: Efficient speech recognition engine with sparse LSTM on

FPGA. In FPGA, 2017.
[11] Yijin Guan et al. Fpga-based accelerator for long short-term memory recurrent

neural networks. In ASP-DAC, 2017.
[12] Shuo Wang et al. C-lstm: Enabling efficient LSTM using structured compression

techniques on fpgas. In FPGA, 2018.
[13] Xiaofan Zhang et al. High-performance video content recognition with long-term

recurrent convolutional network for FPGA. In FPL, 2017.
[14] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.
[15] Kyunghyun Cho. From sequence modeling to translation. In lecture note, Deep

Learning for Machine Translation, October 2015.

6

